Overview of Basic Concepts in Dynamic Network Theory

Working Document

James D. Westaby, Ph.D.
Program in Social-Organizational Psychology, Teachers College, Columbia University
525 W. 120th Street, New York, NY 10027

Email: jdw43@columbia.edu
Web: www.tc.columbia.edu/academics/?facid=jdw43

April, 2012
Abstract

Dynamic network theory is a multidisciplinary framework that shows how social networks influence goal pursuits in social, organizational, and international systems (Westaby, 2012). It integrates social network analysis and psychological science to provide new perspectives on goal achievement, social influence, social capital, and human complexity. This document presents a brief sampling of the new concepts and methods in the theory. As a brief summary, the theory proposes the following: (1) network motivation toward goals (activated by goal strivers and system supporters in social networks) positively influences goal achievement and performance, (2) network resistance (activated by goal preventers and supportive resistors) negatively influences performance, and (3) network reactance roles (activated by system negators and system reactors) and peripheral roles (activated by interactants and observers) have variable effects on performance, depending on the situation. System competency is also predicted to influence performance. Important network regulation processes are proposed, such as the (1) monitoring, feedback, and change process, and (2) the network rippling of emotions process, which shows how emotions flow across social networks in predictable ways after goal achievement (or failure). The theory also introduces the new dynamic network chart method to show exactly how social networks influence goal pursuits in specific cases. The theory has various implications for understanding human behavior, performance, emotional contagion, and conflict in various network systems.

Please use the following reference when referring to theoretical and methodological concepts in this overview document → Westaby, J. D. (2012). Dynamic network theory: How social networks influence goal pursuit. Washington, DC: American Psychological Association. This book presents complete details about the scientific underpinnings and methodologies in this work as well an extensive bibliography.
Overview of Dynamic Network Theory

Page 3

Brief Background

“New advances across the social sciences are highlighting social networks as phenomena that can motivate people and change lives. But what the literature has not addressed is what gives social networks such power. How do they facilitate and regulate change?” (Westaby, 2012, p. vii). In response to such queries, the new research on dynamic network theory examines how social networks influence human goal pursuit (Westaby, 2012). This scholarship formally integrates the science of social networks and the science of human goal pursuit, which have normally been studied in separate literatures. This is a timely integration given the ever increasing importance of social networks in our daily lives (in person or electronically). The theory has novel implications for understanding the complexities of human behavior in diverse areas. It also provides a new dynamic network chart methodology, syntax, and measurement approach to show exactly how social networks are quantitatively linked to specific goal pursuit cases in social, organizational, or international settings. Dynamic network surveys also allow researchers to empirically examine how key social network variables in the theory are related to goal achievement, performance, and target behaviors of interest across larger samples.

The following presents a brief sampling of the new concepts in the theory, which are italicized. Please refer to the book for definitions and a complete discussion of the scientific evidence supporting each of the concepts and propositions.

The Eight Social Network Roles

The theory uniquely postulates how goal achievement, performance, and target behaviors of interest are predicted by the activation of only eight social network roles in dynamic network systems. Dynamic network systems are defined as “The totality of entities and social network roles directly or indirectly involved in targeted goal pursuits” (Westaby, 2012, p. 5). Each of the social network roles are illustrated next and visually illustrated in Figure 1 below. See Chapter 2 for complete definitions, scientific underpinnings, and practical examples.

Network Motivation Roles

Metaphorically, “network motivation serves as the glue that holds social networks together in goal pursuit” (Westaby, 2012, p. 11). Without it, many social structures would collapse, according to the theory. Network motivation is technically defined as “a social network’s general pursuit of goals, which is activated through goal striver (G) and system supporter roles (S)” (Westaby, 2012, p. 33):

- **Goal strivers (G):** entities that are directly trying to pursue the goal or behavior.
- **System supporters (S):** entities that are supporting others in the goal pursuit.

The activation of network motivation roles is predicted to have a universal positive effect on goal achievement and performance by capitalizing on motivational goal mechanisms that drive human performance. Intuitively, more success should be found when more individuals are striving toward a goal and supporting each other as needed in the process.

Network power emerges when the activated goal strivers and system supporters also have high system competency in the goal pursuit (Westaby, 2012, p. 88-90). Metaphorically, network power represents “the strength of the glue that holds social networks together in goal pursuit” (Westaby, 2012, p. 88). System competency also helps social networks from becoming overly dense and inefficient. The
network power concept is theorized to provide a stronger prediction of goal achievement and performance than mainstream “centrality” and “social capital” conceptualizations alone.

Network Resistance Roles

Network resistance is “a social network’s intentional behaviors that work against goals and that are universally implemented through goal preventer and supportive resistor roles” (Westaby, 2012, p. 43):

- **Goal preventers (G’):** entities that are trying to prevent or thwart the goal pursuit.
- **Supportive resistors (S’):** entities that are supporting others in their network resistance efforts.

These role activations are predicted to have a universal negative effect on goal achievement and performance, such as through competition, conflict, and rivalry mechanisms. For example, the more people that are trying to resist a person’s efforts at a goal or behavioral pursuit, the less likely that person will be successful.

Network Reactance Roles

Network reactance represents “a social network’s negative interpersonal relations in regard to those involved with goal pursuit or resistance processes” (Westaby, 2012, p. 46). Network reactance is technically activated through system negator and system reactor roles:

- **System negators (R’):** entities that are negatively reacting to others that are pursuing the goal.
- **System reactors (R):** entities that are negatively reacting to others that are showing network resistance or negativity toward the goal pursuit.

The activation of these roles is predicted to have variable/moderator effects on performance, depending on the situation. To illustrate, on one hand, system negators (e.g., who disapprove of someone’s goal pursuit) may implicitly or explicitly alert goal strivers about problems in their strategy, which can aid the goal striver’s learning and performance. This extends control theory and cybernetic models as delineated in the monitoring, feedback, and change process in dynamic network theory (Westaby, 2012, p. 67-71). On the other hand, when system negation is activated in different situations, some goal strivers may become so distracted by the negativity that it reduces their performance in the system. Hence, being able to constructively manage negative feedback is important in the theory. Network reactance is further postulated to underlie the emergence of negative climates and conflict in social, organizational, and international systems. Generally speaking, the theory also uses the network motivation ratio and network affirmation ratio to quantitatively describe the relative level of motivation and positivity/negativity in the systems.

Peripheral Roles

The last two social network roles in the theory flesh-out the remaining peripheral forces involved in goal pursuits and achievement. Entities exclusively activating these roles are not intentionally helping or hurting the goal pursuit, but may be in the vicinity, which could influence outcomes in the system. These peripheral roles include:

- **Interactants (I):** entities that are encountering others involved in the goal pursuit.
- **Observers (O):** entities that are “observing (or aware of) the people involved in the target behavior/goal pursuit context or situation” (Westaby, 2012, p. 5).
Peripheral role activations are predicted to have variable/moderators effects on performance depending on the situation, such as when observers in a social network can motivate goal strivers that are highly experienced through social facilitation (and priming) effects, but distract other goal strivers that are just learning how to pursue the goal, such as by increasing their stress and anxiety (Westaby, 2012, p. 55-58). Exclusive interactants may also inadvertently cause accidents in some settings, which can reduce a system’s performance.

FIGURE 1: Key concepts in dynamic network theory (Westaby, 2012)

Network Rippling of Emotions and Human Conflict

Dynamic network theory uniquely shows how emotions spread across social networks. This occurs through the network rippling of emotions process in the theory (Westaby, 2012): When goals are achieved, the goal strivers and system supporters in the social network will have positive emotional reactions, while entities activating exclusive interactant and observer roles will experience less network rippling of emotions (e.g., your goal accomplishment will result in your happiness and your supporters’ happiness, while bystanders in that social network will have less intense emotional reactions). Further, if goal preventers and supportive resistors also exist in the dynamic network system, they would be expected to experience a negative network rippling of emotions (e.g., the people trying to prevent your goal achievement, such as rivals, will be upset by your success). Furthermore, they would be expected to target negative emotions or even hostilities toward the goal strivers and system supporters first. The network rippling of emotions can also explain the ways in which various forms of human conflict emerge and potentially become intractable in social networks. See Chapter 2 in Westaby (2012) for more details about related processes and their implications for managing complex conflicts at the national level of analysis, including important issues associated with promoting large-scale goals at the global level.
Dynamic Network Charts

Linking theory to method, dynamic network theory (Westaby, 2012) provides a new language and syntax for creating the new dynamic network chart methodology. These charts show how social networks are precisely involved in specific goal pursuit cases. The following illustrates a simple example of a person supporting (S) another person who is directly trying (G) to achieve a given goal:

FIGURE 2: Basic example

Such charts allow researchers and practitioners to examine a wide variety of important cases. For example, such cases can examine how individuals, groups, organizations, or even nations are involved in significant goal pursuits. They can also be used to model how international social networks are working together (or not) for cooperative missions of global magnitude, such as how country X or NGO X supports country Y in its pursuit of goal Z. See Chapter 1 in Westaby (2012) for important assumptions underlying the entity abstraction process that humans use when characterizing entities and their roles at these higher levels of abstraction in dynamic network systems.

Technically, the symbols used in dynamic network charts show how the social network is involved in the given goal pursuit. For example, a black line directed at a goal shows goal striving (G) while a black line from one entity to another shows system support. The following figure illustrates the important symbols used in dynamic network charts.

FIGURE 3: Chart Key

<table>
<thead>
<tr>
<th>NETWORK AFFIRMATION</th>
<th>NETWORK DE-AFFIRMATION</th>
<th>PERIPHERAL ROLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal striver</td>
<td>Goal preventer</td>
<td>Interactant</td>
</tr>
<tr>
<td>p1 G</td>
<td>p1 G'</td>
<td>p1 p2</td>
</tr>
<tr>
<td>E.g., p1 is directly striving for the goal.*</td>
<td>E.g., p1 is trying to prevent/thwart the goal.*</td>
<td></td>
</tr>
<tr>
<td>System supporter</td>
<td>Supportive resistor</td>
<td>Observer</td>
</tr>
<tr>
<td>p1 S → p2</td>
<td>p1 S</td>
<td>p1 p2</td>
</tr>
<tr>
<td>E.g., p1 is supporting p2 in his or her goal pursuit.</td>
<td>E.g., p1 is supporting p2 in his or her network resistance efforts.</td>
<td></td>
</tr>
<tr>
<td>System reactor</td>
<td>System negator</td>
<td></td>
</tr>
<tr>
<td>p1 R → p2</td>
<td>p1 R'</td>
<td></td>
</tr>
<tr>
<td>E.g., p1 is showing a negative reaction toward p2 who is showing network resistance or negativity toward the goal pursuit.</td>
<td>E.g., p1 is showing a negative reaction to p2 who is trying to pursue or affirm the goal pursuit.</td>
<td></td>
</tr>
</tbody>
</table>

Network motivation = ΣG + ΣS

Network resistance = ΣG' + ΣS'

* G & G’ links are only drawn to goals in dynamic network charts. All others paths are drawn between entities.
In-Depth Example of a Dynamic Network Chart

The following chart illustrates a hypothetical dynamic network chart examining Alex’s goal of getting a specific job. See Chapter 1, Appendix, and Online Resource A in Westaby (2012) for detailed methods, metrics, equations, and simple steps to create these charts. Plans are being made for computer programs to automate these steps. While only salient linkages are shown in the example below, see Chapter 2 and Online Resource A for modeling multiplex linkages, such as an “SIO” linkage (i.e., a system supporter that also interacts around and observes another entity in the goal pursuit). See the supplemental section at the end of this overview document for how traditional social network analyses can be examined within dynamic network charts.

FIGURE 4: In-depth example of a dynamic network chart

1st path subscript
= role activation level (1 = significant activation, 2 = intense activation).

2nd path subscript in parentheses
= role performance level (-3 to +3 [role positively influences overall goal]).

E.g., a “G"2(0)" would indicate intense goal striving but no positive effect on overall goal achievement.

Underlined names = system competency in goal pursuit.

Simplified Illustration of the System-Level Metrics Above (See Chapter 1, Chapter 2, Appendix, or Online Resource A for equations)

● For network motivation (NM), add the 1st path subscripts together across G and S roles (G1 + S1 + S1 = 4).
● For system competency (SC), count the underlined names; each underline implies a value of 1 in this example (SC = 2).
● For network power (NP), add network motivation activations and system competency together (4 + 2 = 6).
● For network affirmation (NA), add the 1st path subscripts together across G, S, and R roles (G1 + S1 + R1 = 5).
● For network resistance (NR), add the 1st path subscripts together across G’ and S’ roles (G1 + S1’ = 3).
● For system competency resistance (SC’), count dashed underlined names; each implies a value of 1 (SC’ = 2; G2’s = 0; there are none in the example).
● For network power resistance (NP’), add network resistance activations and system competency resistance together (3 + 0 = 3).
● For network de-affirmation (ND), add the 1st path subscripts together across G’, S’, and R’ roles (G’1 + S’1 + R’1 = 4).
● For network motivation ratio (NMR), use the following: NM / NM + NR (4 / 4 + 3) = 4 / 7 = .57.
● For network power ratio (NPR), use the following: NP / NP + NP’ (6 / 6 + 3) = 6 / 9 = .67.
● For network affirmation ratio (NAR), use the following: NA / NA + ND (5 / 5 + 4) = 5 / 9 = .56.
● For mutual conflicts, count how many times R and R’ occur together (i.e., Alex and the Competitor are negatively reacting to each other).
● For complexity in this case, add number of entities (5), goals (1), social network role activations (12), SC levels (2), and SC’ levels (0) = 20.
● For average performance for NM, add subscript numbers in parentheses and divide by number of paths (|G1S1 + S1S1| / 3 = 7 / 3 = 2.33).
● For average performance for NR, add subscript numbers in parentheses and divide by number of paths (|G1S1 + S1S1| / 3 = 0 / 2 = 0).
● For average performance for “All roles”, do the same process above across all roles (9 / 10 = .90).

1 See Online Resource A in Westaby (2012) for representing each dynamic network chart in (1) structure-based matrices (akin to adjacency matrices in social network analyses) to make inferences about network structure and (2) prediction-based matrices (akin to attribute matrices) to make predictions about goal achievement and performance criteria across numerous dynamic network systems/charts.
Charting Comparisons

According to dynamic network theory, organizational charts, social network analyses (e.g., sociograms), and dynamic network charts each provide unique perspectives into explaining social structures (See Chapter 3, Westaby, 2012). In the example below, the dynamic network chart adds to past approaches by illustrating, as one example, that “isolates” (i.e., entities with low connections to others and hence low centrality) are not always insignificant. For example, Employee 3 is competently working on a goal where high levels of support are not necessary for his or her functioning. In fact, in many settings, having too many social connections could reduce efficiency and performance, especially when those connections are not infused with system competency, according to the theory. This differs from traditional social capital, “weak link”, and centrality approaches in the social network literature, which generally advance the notion that network connections promote function. In dynamic network theory, it always depends on the type of social network roles being activated. For example, goal striver and system supporter links with high system competency are presumed to be universally functional.

FIGURE 5: Chart comparisons

Organizational Chart

Social Network Analysis

Dynamic Network Chart

Who’s responsible? Who’s interacting? Who’s working toward goals and supporting each other?
Implications

There are various implications of dynamic network theory (Westaby, 2012). The following discussion briefly highlights the theory’s multidisciplinary capacity and its potential contributions to the social scientific literature.

Multidisciplinary Issues

Dynamic network theory integrates numerous phenomena that are often unduly separated by disciplines. For instance, at the micro level, it integrates research on human motivation, self-regulation, social conflict, dynamical processes, and cognitions about social networks. At a broader level, it explains the underlying dynamics involved in group and organizational formation, leadership, helping dynamics, and organizational learning. At a macro level, it illustrates key factors involved in societal anarchy, sovereignty, dark networks, and international relations/political science/military action. Social media, such as Facebook and Twitter, is also explained through the framework, which represents a rich domain for future research. It is hoped that dynamic network theory will provide theorists, researchers, and practitioners with a novel and parsimonious way to explain highly complex forms of human behavior from a single unified theory.

Micro Contributions

1. Only eight social network roles needed. The theory uniquely proposes that only eight social network roles can parsimoniously explain diverse forms of human behavior and goal pursuit at various levels of analysis and complexity. See Chapter 2.

2. New dynamic network charts. The theory provides a new dynamic network chart methodology and syntax to quantitatively show how social networks influence specific cases of goal pursuit, from the micro to the macro. These charts also provide a new approach to conduct case studies, ethnographies, historical analyses, and planned interventions. See Chapter 1, the Appendix (i.e., steps to build them), and Online Resources A and C for methodological details.

3. New network motivation construct. Metaphorically, network motivation is the “glue that holds social networks together in goal pursuit” (p. 11), which is concretely operationalized. Without it, most social structures would collapse, according to the theory. See Chapter 2.

4. Introduces the network rippling of emotions process. The network rippling of emotions process shows how emotions spread to specific entities in social networks (e.g., positive emotions become much more contagious among entities activating goal striver and system supporter roles after goal achievement than entities in interactant and observer). See Chapter 2.
5. **New network-based understanding of human conflict.** The theory shows how conflicts emerge from social network linkages involved in goal pursuits (e.g., from goal non-achievement or from network reactance linkages and their escalation). This provides a broader explanation of social dynamics in contrast to traditional theories, such as game theory. See Chapter 2.

6. **Unique predictors of behavior.** The theory provides a new network-based approach to predict goal achievement, performance, and target behaviors of interest in contrast to micro behavioral intention models, which do not fully account for social network dynamics. See Chapter 2 and Online Resource B.

7. **New network script and accountability blockmodeling concepts.** *Network scripts* show how social networks pursue goals over time and *accountability blockmodeling* allows researchers and practitioners to chart responsibility mechanisms in organizational settings. See Chapter 3.

8. **New psychological concepts, such as dynamic network intelligence (DNI), role risk aversion, network optimism, and dynamic network schemas.** *Dynamic network intelligence* provides a different lens into the accuracy of social perceptions in contrast to extant social and emotional intelligence measures. *Role risk aversion* illustrates cautiously motivated behaviors in dynamic network systems, while *network optimism* and *dynamic network schemas* represent important internal representations of external dynamic network systems (accurately or inaccurately). See Chapter 5.

9. **Illustrates potential limits of homophily and structural balance.** Dynamic network theory predicts that network power often mediates (and out-predicts) the effects of homophily and structural balance on performance. See Chapters 2 and 4.

10. **New perspective on personality determinants.** The theory shows how various personality dimensions and individual differences (e.g., extroversion, conscientiousness, collectivism, and trustworthiness) can be parsimoniously explained by the eight social network role activations. See Chapter 5.

Macro Contributions

1. **Introduces the entity abstraction process.** Dynamic network theory introduces the *entity abstraction process* to show how people seamlessly use abstraction processes to simplify their identification of entities at higher levels of analysis, such as homogeneous groups, organizations, and nations. See Chapter 1.

2. **Unique insight into organizational formation, leadership, and organizational learning.** The theory provides a new, network-based explanation of group and organizational formation and their associated dynamics, including an explanation about how outgroup entities influence ingroup entities and new insights into leadership networks and organizational learning. See Chapters 3 and 4.
3. New operationalization of “complexity”. The theory provides a new quantitative metric to describe the “complexity” of goal pursuits in specific cases. Past theories have been mute about how to quantitatively characterize this important concept in real-world systems involved in goal pursuit. See Chapter 2.

4. Alternative description of culture. Dynamic network theory provides a new, parsimonious, and quantitative understanding of “general roles” and “culture,” which often are explained by the underlying eight social network roles directed toward various goal associated with the general roles or cultures. See Chapter 5.

5. New approach to emergence and contagion. The theory provides several new explanations for social contagion, diffusion, and emergence that are embedded within dynamic network systems, thereby contributing to the non-linear and dynamical systems literature. See Chapter 2.

6. Illustrates potential limits to the traditional “centrality” concept. The theory suggests that traditional social network propositions about centrality can sometimes lead to inaccurate inferences about power and intervention. See Chapters 2 and 4.

7. Goes beyond organizational charts and social network analyses. Dynamic network theory demonstrates how (1) organizational charts in management and (2) traditional social network analyses in sociology (i.e., sociograms) could miss powerful mechanisms driving human achievement and performance. Dynamic network charts are meant to fill this void. See Chapter 3 for these comparisons.

8. New explanation of dark networks. The theory provides a new explanation of dark networks, such as criminal, terrorist, and insurgency networks, as compared to traditional approaches in the social network literature. See Chapter 4.

9. Theoretical explanation of social media. It provides a new theoretically-based understanding of social media and social networking, such as Facebook and Twitter, which often implicitly focus on promoting the activation of constructive network motivation roles. Much less work has examined important issues regarding network reactance, which can be widely seen on social media websites and the internet. See Chapter 4.

10. New multilevel concepts. The theory provides new ways to examine multilevel performance in dynamic network systems. See Chapter 1. Further, the new multilevel sovereignty concept is introduced in the context of classic sovereignty conceptions in the international relations and political science literatures. This concept attempts to further advance our understanding of how goals are pursued in more complex multilevel systems with varying degrees of sovereignty. See Chapter 2.
Recent Research

- Using surveys to test how the eight social network roles and system competency variables predict various behaviors, goal achievements, performance levels, and satisfaction.

- Creating a new observation method to code observable human interactions into the eight social network role and system competency variables in real time. These metrics are used to predict communication performance, satisfaction, and the emergence of positive and negative climates and general conflict. This method also provides new opportunities to examine dynamic network intelligence in observable systems.

- Testing how dynamic network theory’s predictions about performance differ from traditional group and social network approaches.

- Using computational/agent-based models to show how people select others into their dynamic network systems over time (via social network role and system competency variables). Stochastic models and Monte Carlo simulations are being utilized.

- Using the theory to show how network interventions, network therapy, and large group interventions impact large-scale performance and change.

- Showing how leadership results in network expansions and brokerage to pursue the development of global communities in science and practice.

- Using archival data to model national involvement in warfare via theoretical parameters.

- Modeling the efficiency of NGO’s and their dynamic network systems when trying to service people in need.

- Using dynamic network charts to model and implement behavioral change interventions (e.g., losing weight, getting a job, quitting tobacco, getting grants, starting a business, promoting a charity, getting into academic programs, finding internships, and improving group and organizational systems).

Brief Conclusion

Dynamic network theory provides a new meta-theoretical approach that unifies social network models and goal theories. It also advances an array of new methodologies that are meant to help theorists, researchers, and practitioners better explain the complexities of human behavior at individual, group, organizational, and international levels of analysis.
Supplemental Information

Supplement A: Traditional social network analyses

Figure 6 presents a traditional social network analysis (SNA) of the “job search” example presented as a dynamic network chart earlier (See Figure 4). The two approaches are complementary in that traditional social networks are embedded within dynamic network charts, according to the theory (Westaby, 2012). Dynamic network charts add value because they directly infuse goals into social networks to show exactly how different entities are influencing the given goal pursuit through the eight social network role activations. For example, some entities may be helping, some hurting, and some may be activating peripheral roles that inadvertently influence goal pursuit processes. Traditional social network analysis, despite its usefulness and value for describing the structural characteristics of the network, lacks this motivational explanation.

FIGURE 6: Example social network analysis

Supplement B: Mediation model

To theoretically capture the causal flow of motivational forces among the eight social network role activations, dynamic network theory (Westaby 2012) presents a partial mediation model that shows how secondary roles (i.e., S, S’, R, R’, I, and O) influence primary goal roles (i.e., G, G’) which in turn influence goal achievement, performance, or targeted behaviors of interest (GPB). Secondary Roles → Primary Goal Roles → GPB. The theory also postulates that secondary roles can have direct effects on GPB (p. 61-64). For example, an exclusive interactant in a social network can inadvertently cause an accident that directly reduces the likelihood of GPB despite the efforts at goal striving and system supporting in the system. Reliability, validity, and methods for statistically testing this model are discussed in Online Resource B (including the use of structural equation modeling).

Supplement C: Dynamic network theory’s relation to behavioral reasoning theory

Prior to establishing dynamic network theory, Westaby created behavioral reasoning theory (BRT) to predict specific behaviors (Westaby, 2005). Generally speaking, BRT explains human behavior at the psychological level of analysis with the following mediation flow: Beliefs and Values → Reasons (i.e., for and against) → Global Motives (e.g., attitude, subjective norm, and perceived control) → Intention → Behavior. Direct effects from reasons to intention are also hypothesized, which can theoretically be driven by implicit, explicit, or automated processes. This critical proposition substantively extends previous work on behavioral intention theories, such as the theory of reasoned action (Fishbein & Ajzen, 1975; 2010) and theory of planned behavior (Ajzen, 1991), which have not accounted for the importance of people’s behavioral reasons. Various lines of experimental and correlational research have supported the newly proposed direct linkage between reasons and intentions in BRT (e.g., Wagner, 2010; Westaby, 2005; Westaby, Probst, & Lee, 2010; Zusman, 2009). In other words, BRT has
explained unique variance in intentions over and above that explained by the traditional theories. BRT also accounts for post-decision dissonance effects, especially between behavioral activation and the further justification and rationalization of human behavior via subjective reasons. This can result in further behavioral commitment.

As for the theoretical link to dynamic network theory, the conceptualization of “goal striver activation” in dynamic network theory is analogous to an entity that has a strong intention to engage in a goal or behavioral pursuit. BRT (along with other decision making models as discussed in Chapter 1 of Westaby, 2012) can provide insight into the underlying decision-making factors that activate goal strivers in the first place. Thus, the theories are complementary. While BRT examines the initial decision making factors presumed to underlie goal striver activation, dynamic network theory examines how these goal strivers (G) are implementing their roles in the context of other entities activating important roles in the broader social network (i.e., S, S’, G’, R, R’, I and O). Hence, dynamic network theory provides an integrative meta-theoretical framework that subsumes BRT, which allows dynamic network theory to explain a much broader range of human behavior and social complexities. See Westaby (2012) or the following URL for references: www.tc.columbia.edu/academics/?facid=jdw43

Preface
Chapter 1: Theoretical overview, assumptions, and levels of analysis
Chapter 2: Dynamic goal pursuit: Network motivation, emotions, conflict, and power
Chapter 3: Groups, organizations, and goal pursuits over time
Chapter 4: Interventions: Leadership, helping, networking, and organizational learning
Chapter 5: Cognition and mental health in social networks
Chapter 6: Conclusions and applications
Book Appendix: How to build dynamic network charts

Online Resources
A: Analyzing dynamic network charts
B: Dynamic network surveys, reliability, and validity
C: Supplemental analyses and figures

Full Reference:

[See Amazon.com or APA Books, if interested in checking its availability]